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Abstract

This report presents performance results for a subset of ScaLAPACK driver routines and
PBLAS routines on the Cray T3E, IBM SP, SGI Origin 2000, and SGI Power Challenge Ar-
ray platforms at the Department of Defense (DoD) CEWES, ARL, and ASC Major Shared
Resource Centers (MSRCs). Performance is analyzed using SGI MPI v3.0 versus MPICH
version 1.1.0 on the SGI platforms, and MPI versus shmem on the Cray T3E. On the Cray
T3E, correctness of the version of ScaLAPACK included in LIBSCI is tested, and perfor-
mance timings are compared against the freely available version of ScaLAPACK on netlib
using the MPIBLACS. On the IBM SP, correctness of the version of ScaLAPACK included
in PESSL is tested, and performance timings are compared against the freely available
version of ScaLAPACK on netlib using the MPIBLACS. On the SGI platforms, ScaLA-
PACK performance using distributed memory BLAS (PBLAS) is compared to LAPACK
performance using the multi-threaded MP BLAS.
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1 Introduction

ScaLAPACK is a library of high-performance linear algebra routines for distributed-
memory, message-passing MIMD computers and networks of workstations supporting PVM
and/or MPI. It is a continuation of the LAPACK project, which designed and produced
analogous software for workstations, vector supercomputers, and shared-memory parallel
computers. Both libraries contain routines for solving systems of linear equations, least
squares problems, and eigenvalue problems. The goals of both projects are e�ciency, scal-
ability (as the problem size and number of processors grow), reliability (including error
bounds), portability, and ease of use. LAPACK will run on any machine where the BLAS
are available, and ScaLAPACK will run on any machine where both the BLAS and the
BLACS are available.

ScaLAPACK has been incorporated into several commercial packages, including the
NAG Parallel Library, IBM Parallel ESSL, and Cray LIBSCI, and is being integrated
into the VNI IMSL Numerical Library, as well as software libraries for Fujitsu, Hewlett-
Packard/Convex, Hitachi, SGI, and NEC.

This report presents performance timings for version 1.5 of ScaLAPACK [2] on the
Cray T3E, IBM SP, SGI Origin 2000, and SGI Power Challenge Array platforms at the
Department of Defense (DoD) CEWES, ARL, and ASC Major Shared Resource Centers
(MSRCs). The SGI timings were performed using SGI MPI v3.0 and MPICH version 1.1.0,
and the optimized SGI BLAS (-lblas). Performance comparisons were also made between
ScaLAPACK using distributed memory BLAS (PBLAS) and LAPACK [1], version 2.0,
using the optimized SGI MP BLAS (-lblas mp). For the Cray T3E, performance timings
were obtained using Cray MPI and Cray shmem, and the optimized BLAS from LIBSCI
(CrayLibs). For the IBM SP, performance timings were obtained using the IBM POE
library, speci�cally MPI, and Parallel ESSL and ESSL.

The timings were conducted between October 1997 and March 1998. During that time,
vendor software upgrades for the PCA and O2K were made to correct errors detected during
testing and timing of the packages. Timings were performed in batch queue mode (via
qsub or LoadLeveler) during regular user mode and dedicated mode. Timing uctuations
were encountered. To obtain up-to-date performance �gures, users should use the timing
programs provided with LAPACK and ScaLAPACK.

The LAPACK and ScaLAPACK packages are freely available on netlib and can be
obtained via the World Wide Web or anonymous ftp.

http://www.netlib.org/lapack/

http://www.netlib.org/scalapack/

Section 2 provides an overview of the machine characteristics of the computer systems
utilized at the DoD MSRCs. Sections 3, 4, 5, and 6 present performance data for the Cray
T3E, IBM SP, SGI Origin 2000, and SGI Power Challenge Array, respectively, at the DoD
MSRCs. Section 7 summarizes our conclusions and suggestions for further study.
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2 Overview of Machine Characteristics of DoD MSRC sys-

tems

In this section, we indicate the hardware and software that characterized each machine
during these timings. The two most important software components for ScaLAPACK are
its compute kernel, the serial BLAS, and its communication kernel, the BLACS. The BLACS
are in turn usually based on a system-speci�c message passing library such asMPI or shmem.
Therefore, in this section we preview some performance indicators for these kernels.

We have two performance indicators for the compute kernel. The Peak performance is
the theoretical peak oating point performance for one processor. We can obtain the theo-
retical peak oating point performance from the clock rate of the chip using the following
information:

� The CRAY T3E (based on the Alpha 21164 chip) and the SGI Origin 2000 (based on
SGI's R10000 chip) have separate oating point adders and multipliers. This means
that if the instruction mix can issue one oating point add and one oating point
multiply every cycle (matrix multiply can do this), a peak megaop rate of twice the
clock rate is obtained.

� The IBM SP (based on IBM POWER2 chip) and the SGI Power Challenge Array
(based on the SGI R8000 chip) have two oating point units each of which can issue
a fused multiply add instruction every clock cycle. This allows these architectures to
achieve peak megaop rates of four times the clock rate, assuming the instruction being
executed is expressed as a fused multiply/add (matrix multiply may be expressed in
this way).

Tables 1 and 2 provide a snapshot of the CEWES MSRC machines discussed in this
report, as they were con�gured during these timings.

Table 3 describes the ARL MSRC machines discussed in this report, as they were con-
�gured during these timings.

Table 4 describes the ASC MSRC machines discussed in this report, as they were con-
�gured during these timings.

Table 5 shows the compute kernel indicators, while tables 6, 7, and 8 show the perfor-
mance of various message passing libraries across the systems.

The measurement labeled FMM is our \achievable peak" for uniprocessor oating point
performance, which we have arbitrarily chosen to be a matrix-matrix multiplication of order
500. Since many linear algebra routines derive a large part of their performance from matrix
multiply, we can get a rough idea of how well a particular routine is doing by seeing how
great a percentage of this \achievable peak" it obtains.

For the communication kernel, we measure two widely-recognized communication bench-
marks, the communication latency (denoted as tm) and bandwidth (denoted by 1=tv). We
de�ne the latency to be the time it takes to send a 0-byte message. Bandwidth is a mea-
surement of the maximal amount of data that can be transferred between processors per
unit of time. For each platform, we report latency and bandwidth for both the BLACS and
the message passing library it is based on (e.g., MPI).
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Table 1: Characteristics of the Cray T3E (jim) and the IBM SP (osprey) at the CEWES
MSRC

Cray T3E IBM SP

Processor 64-bit Dec ALPHA processor EV5.6 POWER2 590

Clock speed (MHz) 450 135

Processors per node 1 1

Memory per node (MB) 256 1000

Operating system UNICOS/mk 2.0.2.19 AIX 4.1.4

BLAS LIBSCI (CrayLibs 3.0.1.2) ESSL 2.2.2.4

BLACS MPI BLACS 1:1� MPI BLACS 1:1�
and Cray BLACS

Communication Software Cray MPI (mpt.1.2.0.0.6 beta) POE (2.1.0.17)
Cray shmem

C compiler cc (3.0.1.3) mpcc (3.1.4.0)

C ags -O3 -O3 -qarch=pwr2

Fortran compiler f90 (3.0.1.3) mpxlf (4.1.0.3)

Fortran ags -dp -X m -O3,aggress -O3 -qarch=pwr2

Precision single (64-bit) double (64-bit)

The latency values are simple measurements of the time to send a 0-byte message from
one processor to another, while the bandwidth �gures are obtained by increasing message
length until message bandwidth was saturated. We use the same timing mechanism for
both the BLACS and the underlying message-passing library.

These numbers are actual timing numbers, not values based on hardware peaks, for
instance. Therefore, they should be considered as approximate values or indicators of
the observed performance between two nodes, as opposed to precise evaluations of the
interconnection network capabilities.

It should be noted that timings for the Cray shmem BLACS are not reported because
errors were detected during their testing. The BLACS test suite was downloaded from
netlib and run on the Cray shmem BLACS from LIBSCI (CrayLibs 3.0.1.2). The detected
errors were reported.

In addition, two bugs in Cray MPI (mpt.1.2.0.0.6 beta) were also detected and reported
to the vendor. It was possible to code around these MPI bugs so that the Cray MPI BLACS
would run correctly on the Cray T3E and pass all tests of the BLACS Test Suite. Thus,
timings for the MPI BLACS are listed in this report. These LIBSCI and Cray MPI errors
have been reported to Cray Research and we are awaiting news of their correction.
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Table 2: Characteristics of the SGI Origin 2000 (pagh) and the SGI PCA (pca1) at the
CEWES MSRC

SGI O2K SGI PCA

Processor R10000 (IP27) R8000 (IP21)

Clock speed (MHz) 195 90

Processors per node 1 16

Memory per node (MB) 512 512

Operating system IRIX 6.4 IRIX 6.2

BLAS SGI BLAS SGI BLAS
SGI MP BLAS SGI MP BLAS

BLACS MPI BLACS 1:1� MPI BLACS 1:1�

Communication Software SGI MPI v3.0 SGI MPI v3.0

C compiler cc (MIPSpro v7.10) cc (MIPSpro v7.10)

C ags -O2 -64 -mips4 -r10000 -O2 -64 -mips4 -r8000
or or

-O2 -64 -mips4 -r10000 -mp -O2 -64 -mips4 -r8000 -mp

Fortran compiler f77 (MIPSpro v7.10) f77 (MIPSpro v7.10)

Fortran ags -O2 -64 -mips4 -r10000 -O2 -64 -mips4 -r8000
or or

-O2 -64 -mips4 -r10000 -mp -O2 -64 -mips4 -r8000 -mp

Precision double (64-bit) double (64-bit)
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Table 3: Characteristics of the SGI PCA (cosm1 and cosm3) and the SGI Origin 2000
(herman1) at the ARL MSRC

SGI PCA SGI O2K

Processor R8000 (IP21) R10000 (IP27)

Clock speed (MHz) 75 195

Processors per node 12 1

Memory per node (MB) 170 512

Operating system IRIX 6.2 IRIX 6.4

BLAS SGI BLAS SGI BLAS
SGI MP BLAS SGI MP BLAS

BLACS MPI BLACS 1:1� MPI BLACS 1:1�

Communication Software SGI MPI v3.0 SGI MPI v3.0

C compiler cc (Mongoose v7.1) cc (Mongoose v7.1)

C ags -O2 -64 -mips4 -r8000 -O2 -64 -mips4 -r10000
or or

-O2 -64 -mips4 -r8000 -mp -O2 -64 -mips4 -r10000 -mp

Fortran compiler f77 (Mongoose v7.1) f77 (Mongoose v7.1)

Fortran ags -O2 -64 -mips4 -r8000 -O2 -64 -mips4 -r10000
or or

-O2 -64 -mips4 -r8000 -mp -O2 -64 -mips4 -r10000 -mp

Precision double (64-bit) double (64-bit)
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Table 4: Characteristics of the SGI O2K (hpc03) and the IBM SP (hpc02) at the ASC
MSRC

SGI O2K IBM SP

Processor R10000 (IP27) POWER2 590

Clock speed (MHz) 195 135

Processors per node 1 1

Memory per node (MB) 512 1000

Operating system IRIX 6.4 AIX 4.1.5

BLAS SGI BLAS ESSL 2.2.2.1
SGI MP BLAS

BLACS MPI BLACS 1:1� MPI BLACS 1:1�

Communication Software SGI MPI v3.0 POE (2.1.0.22)

C compiler cc (MIPSpro v7.2) mpcc (3.1.4.0)

C ags -O2 -64 -mips4 -r10000 -O3 -qarch=pwr2
or

-O2 -64 -mips4 -r10000 -mp

Fortran compiler f77 (MIPSpro v7.2) mpxlf (3.2.4.0)

Fortran ags -O2 -64 -mips4 -r10000 -O3 -qarch=pwr2
or

-O2 -64 -mips4 -r10000 -mp

Precision double (64-bit) double (64-bit)

Table 5: Level 3 BLAS performance indicator

Mop/s

FMM Peak

CEWES MSRC

SGI PCA 334 380
SGI O2K 318 390
IBM SP 500 540
Cray T3E 549 900

ARL MSRC

SGI PCA 256 300
SGI O2K 330 390

ASC MSRC

SGI O2K 335 390
IBM SP 316 540
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Table 6: Message passing performance indicators for the Cray T3E-900

tm (�s) 1=tv (MB/s)
BLACS Cray MPI BLACS Cray MPI

Cray T3E (CEWES MSRC) 30.3 17.8 115.3 170.9

Table 7: Message passing performance indicators for the IBM SP

tm (�s) 1=tv (MB/s)
BLACS Native BLACS Native

IBM SP (MPI) (CEWES MSRC) 57.9 29.0 71.6 96.1

IBM SP (MPI) (ASC MSRC) 66.7 33.1 71.7 96.0

Table 8: Message passing performance indicators for the SGI O2K and SGI PCA

tm (�s) 1=tv (MB/s)
BLACS SGI MPI BLACS MPICH BLACS SGI MPI BLACS MPICH

CEWES MSRC

SGI O2K 20.6 13.1 41.1 27.1 94.0 130.3 58.7 77.0

SGI PCA 42.1 19.7 121.7 65.8 70.2 78.0 50.1 54.9

ARL MSRC

SGI O2K 21.9 13.3 43.9 28.7 94.0 131.0 56.4 65.2

SGI PCA

ASC MSRC

SGI O2K 22.4 14.7 84.1 135.2
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2.1 Discussion

The most important thing to note from table 5 in this section is the pressing need for ASC
to upgrade their version of ESSL. Note that ESSL version 2.2.2.1 achieves approximately
63% (316 Mop/s versus 500 Mop/s) of the performance obtained by the newer version
(2.2.2.4).

3 Cray T3E

We present performance data for the netlib version of ScaLAPACK and the version of
ScaLAPACK in LIBSCI on the Cray T3E-900 (jim) located at the CEWES MSRC. The
message-passing libraries used were the Cray shmem library and the Cray MPI library. For
all timings, the optimized BLAS in Cray LIBSCI were used.

3.1 Porting ScaLAPACK and the MPI BLACS to the Cray T3E

A few errors were detected in the MPI BLACS and ScaLAPACK in porting them to the
Cray T3E. A T3E patch for the MPI BLACS and ScaLAPACK is available on netlib. Details
of the \patches" can be found in the respective errata �les on netlib.

http://www.netlib.org/blacs/errata.blacs

http://www.netlib.org/scalapack/errata.scalapack

Also noted in these errata �les are Cray-speci�c modi�cations that are ONLY required on
the Cray T3E due to non-standard features of the T3E compilers and arithmetic.

Two bugs in Cray MPI (mpt.1.2.0.0.6 beta) were also detected and reported to the
vendor. It was possible to code around these MPI bugs so that the Cray MPI BLACS
would run correctly on the Cray T3E and pass all tests of the BLACS Test Suite. Thus,
timings for the MPI BLACS on top of Cray MPI were reported in Table 6. (Previous
versions of Cray MPI had been tried, but it was not possible to code around the bugs
that were detected. The bugs were reported to the vendor and were �xed in version (mpt
1.2.0.0.6 beta) of the library.)

3.2 Testing of ScaLAPACK within LIBSCI (CrayLibs)

An optimized version of ScaLAPACK is available in the Cray Scienti�c Software Library.
We tested CrayLibs version 3.0.1.2 and version 3.0.1.3, which includes a subset of routines
from ScaLAPACK, version 1.5, from netlib. Previous versions of ScaLAPACK in LIBSCI
(CrayLibs) were incompatible with the version of ScaLAPACK on netlib due to a change
to the ordering of the array descriptor. As soon as Cray's LIBSCI was updated with
ScaLAPACK, version 1.5, this incompatibility problem was alleviated.

Timings for Cray's native BLACS using the shmem library were not reported in Table 6
because errors were detected during their testing. The BLACS Test Suite was downloaded
from netlib and run on the Cray shmem BLACS from LIBSCI (CrayLibs 3.0.1.2). The
errors detected have been reported to the vendor.

LIBSCI (CrayLibs 3.0.1.2) lacks the following ScaLAPACK routines:
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� psgecon.f, psdbtrf.f, psdbtrs.f, psdttrf.f, psdttrs.f, psgbtrf.f, psgbtrs.f, pspocon.f, psporfs.f,

pspbtrf.f, pspbtrs.f, pspttrf.f, pspttrs.f, pstzrzf.f, psgels.f, pssyev.f, psgesvd.f, and psormlq.f

� pcgecon.f, pcgerfs.f, pcdbtrf.f, pcdbtrs.f, pcdttrf.f, pcdttrs.f, pcgbtrf.f, pcgbtrs.f, pcpocon.f,

pcporfs.f, pcpbtrf.f, pcpbtrs.f, pcpttrf.f, and pcpttrs.f

In addition, the C interface to the BLACS is not provided in LIBSCI so a set of wrapper
routines had to be provided. The wall-clock and cpu timers included in the netlib version of
the BLACS are also not provided in the Cray shmem BLACS, so these had to be provided
in order to run the ScaLAPACK Test Suite.

The ScaLAPACK Test Suite was run on LIBSCI (CrayLibs 3.0.1.2), and errors were
detected in pcgeqlf.f and pssyevx.f. These errors were reported to the vendor.

LIBSCI (CrayLibs 3.0.1.3) includes a few more routines than the previous version, but
still lacks the following ScaLAPACK routines:

� psgecon.f, psdbtrf.f, psdbtrs.f, psdttrf.f, psdttrs.f, psgbtrf.f, psgbtrs.f, pspocon.f, psporfs.f,

pspbtrf.f, pspbtrs.f, pspttrf.f, pspttrs.f, pstzrzf.f, psgels.f, pssyev.f, psgesvd.f, and psormlq.f

� pcgerfs.f, pcdbtrf.f, pcdbtrs.f, pcdttrf.f, pcdttrs.f, pcgbtrf.f, pcgbtrs.f, pcpocon.f, pcporfs.f,

pcpbtrf.f, pcpbtrs.f, pcpttrf.f, and pcpttrs.f

Running the ScaLAPACK Test Suite on this version of LIBSCI (CrayLibs 3.0.1.3) revealed
that the bug in pcgeqlf.f had been �xed. Failures in pssyevx.f still occur and they are under
investigation.

3.3 Parallel matrix-matrix multiply performance

Asymptotically, the performance of the PBLAS will rest on the performance of the corre-
sponding BLAS routine. For smaller problem sizes, lower order costs { primarily communi-
cation { will cause performance loss. We therefore see that e�ects due to BLACS optimality
will be seen mostly in the smaller problem sizes. These results have been obtained for the
matrix-matrix multiply operation C  C+AB, where A, B, and C are square matrices of
order N .

We collected performance data for the Level 3 PBLAS routine PSGEMM from the netlib
version of ScaLAPACK and the version of ScaLAPACK in LIBSCI (CrayLibs). Timings
were performed during \non-dedicated" time and \dedicated" time using batch queues via
\qsub". We were unable to repeat all timings using both methods due to a paucity of
dedicated time.

Tables 9 and 11 show performance for non-dedicated runs, while tables 10 and 12 sum-
marize our dedicated results.
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Table 9: Speed in Mop/s for the two versions of PBLAS matrix-matrix multiply routine
PSGEMM, NON-DEDICATED time (Cray T3E)

Process Block Values of N
grid size 1000 2000 3000 4000 5000

2� 2 24 { { { { {
2� 2 48 1873 2067 2118 2126 2142
2� 2 72 { { { { {

(NETLIB) 2� 4 24 { { { { {
2� 4 48 3305 3804 4027 4148 4206
2� 4 72 { { { { {
4� 4 24 { { { { {
4� 4 48 5906 7135 7811 8073 8244
4� 4 72 { { { { {
4� 8 24 { { { { {
4� 8 48 9332 12376 14348 14898 15646
4� 8 72 8288 12582 13818 15853 15913

2� 2 24 1566 1656 1659 1725 1725
2� 2 48 1886 2099 2122 2126 2154
2� 2 72 { { { { {

(LIBSCI) 2� 4 24 2873 3155 3204 3330 3330
2� 4 48 3349 3911 4081 4186 4261
2� 4 72 { { { { {
4� 4 24 5286 6004 6277 6547 6547
4� 4 48 6013 7307 7922 8206 8386
4� 4 72 { { { { {
4� 8 24 9213 11162 11849 12616 12616
4� 8 48 9950 12786 14892 15189 16159
4� 8 72 { { { { {
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Table 10: Speed in Mop/s for the two versions of PBLAS matrix-matrix multiply routine
PSGEMM, DEDICATED time (Cray T3E)

Process Block Values of N
grid size 1000 2000 3000 4000 5000

2� 2 24 1639 1759 1802 1808 1818
2� 2 48 1873 2067 2118 2126 2142

(NETLIB) 2� 4 24 2922 3336 3470 3542 3584
2� 4 48 3308 3807 4028 4148 4206
4� 4 24 5185 6319 6738 6915 7030
4� 4 48 5913 7134 7807 8105 8242
4� 8 24 8478 11172 12536 13069 13437
4� 8 48 9317 12368 14347 14886 15648

2� 2 24 1715 1799 1825 1836 1847
2� 2 48 1883 2096 2119 2124 2151

(LIBSCI) 2� 4 24 3119 3473 3542 3623 3667
2� 4 48 3343 3908 4077 4185 4106
4� 4 24 5610 6637 6927 7089 7211
4� 4 48 6022 7310 7920 8207 8384
4� 8 24 9481 11929 13054 13606 13946
4� 8 48 9929 12805 14886 15189 16153
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Table 11: Speed in Mop/s for the two versions of PBLAS matrix-matrix multiply routine
PSGEMM, NON-DEDICATED time (Cray T3E)

Process Block Values of N
grid size 6000 7000 8000 9000 10000

2� 2 24 { { { { {
2� 2 48 { { { { {
2� 2 72 { { { { {

(NETLIB) 2� 4 24 { { { { {
2� 4 48 4176 4250 4272 { {
2� 4 72 { { { { {
4� 4 24 { { { { {
4� 4 48 8340 8303 8403 8463 8504
4� 4 72 { { { { {
4� 8 24 { { { { {
4� 8 48 15962 15884 16285 16394 16619
4� 8 72 16337 15617 17097 17226 17261

2� 2 24 { { { { {
2� 2 48 { { { { {
2� 2 72 { { { { {

(LIBSCI) 2� 4 24 3345 3351 3354 { {
2� 4 48 4180 4248 4269 { {
2� 4 72 { { { { {
4� 4 24 6618 6698 6741 6750 6833
4� 4 48 8323 8375 8433 8521 8555
4� 4 72 { { { { {
4� 8 24 12803 13002 13192 13146 13233
4� 8 48 16127 16065 16576 16523 16891
4� 8 72 { { { { {
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Table 12: Speed in Mop/s for the two versions of PBLAS matrix-matrix multiply routine
PSGEMM, DEDICATED time (Cray T3E)

Process Block Values of N
grid size 6000 7000 8000 9000 10000

2� 2 24 { { { { {
2� 2 48 { { { { {

(NETLIB) 2� 4 24 3584 3613 3618 { {
2� 4 48 4173 4223 4253 { {
4� 4 24 7104 7188 7159 7216 7223
4� 4 48 8340 8304 8407 8474 8503
4� 8 24 13650 13895 13967 14107 14180
4� 8 48 15964 15883 16312 16392 16618

2� 2 24 { { { { {
2� 2 48 { { { { {

(LIBSCI) 2� 4 24 3644 3677 3669 { {
2� 4 48 4176 4250 4272 { {
4� 4 24 7232 7322 7281 7329 7342
4� 4 48 8321 8372 8435 8522 8559
4� 8 24 13970 14192 14325 14471 14537
4� 8 48 16124 16052 16572 16531 16890
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3.4 Parallel LU factorization/solve performance

Similarly, we collected performance data for the LU factor/solve driver routine PSGESV
from the netlib version of ScaLAPACK and the version of ScaLAPACK in LIBSCI (CrayLibs).
PSGESV solves a square linear system of order N by LU factorization with partial row piv-
oting of a real matrix. For all timings, 64-bit oating-point arithmetic was used. Thus,
double precision timings are reported on all computers. The distribution block size is also
used as the partitioning unit for the computation and communication phases.

Timings were performed during \non-dedicated" time and \dedicated" time using batch
queues via \qsub".
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Table 13: Speed in Mop/s for the two versions of the LU factor/solve routine PSGESV
for square matrices of order N , NON-DEDICATED time (Cray T3E)

Process Block Values of N
Grid Size 1000 2000 3000 4000 5000 7500 10000 12500 15000

1� 4 24 678 1050 1251 1348 1426 1539 1598 { {
1� 4 32 664 1042 1259 1377 1467 1608 1678 { {
1� 4 48 598 995 1232 1376 1483 1660 1761 { {
1� 4 72 509 886 1133 1294 1414 1623 1751 { {
2� 4 24 677 1409 1917 2239 2459 2802 2997 3126 {
2� 4 32 638 1402 1907 2242 2513 2906 3131 3287 {
2� 4 48 628 1336 1881 2226 2527 2991 3273 3462 {

(NETLIB) 2� 4 72 561 1217 1744 2097 2441 2920 3237 3479 {
2� 8 24 808 1984 2944 3645 4112 5037 5483 5818 6046
2� 8 32 767 1927 2849 3533 4098 5107 5621 6016 6273
2� 8 48 726 1772 2699 3355 3953 5048 5680 6160 6493
2� 8 72 632 1545 2387 3012 3671 4712 5417 5995 6339
4� 8 24 780 2318 3793 5233 6206 8287 9544 10459 11037
4� 8 32 754 2182 3703 4852 6166 8295 9729 10726 11425
4� 8 48 737 2096 3460 4929 5940 8264 9765 10965 11736
4� 8 72 682 1917 3201 4491 5594 7749 9406 10557 11443

1� 4 24 742 1089 1279 1368 1449 1558 { { {
1� 4 32 709 1075 1284 1394 1485 1623 { { {
1� 4 48 637 1019 1253 1393 1504 1680 { { {
1� 4 72 526 903 1145 1307 1426 1637 { { {
2� 4 24 881 1623 2089 2370 2562 2870 3042 3164 {
2� 4 32 820 1609 2072 2359 2615 2972 3169 3321 {
2� 4 48 785 1512 2031 2341 2627 3060 3320 3500 {

(LIBSCI) 2� 4 72 676 1360 1865 2196 2523 2979 3279 3512 {
2� 8 24 1107 2362 3286 3936 4395 5225 5625 5937 6137
2� 8 32 1022 2282 3184 3820 4364 5290 5760 6146 6376
2� 8 48 936 2043 2961 3598 4191 5223 5820 6276 6585
2� 8 72 786 1732 2563 3207 3826 4857 5523 6087 6415
4� 8 24 1170 2987 4612 5966 6991 8849 9953 10760 11273
4� 8 32 1128 2891 4505 5670 6912 8855 10130 11031 11642
4� 8 48 1051 2648 4173 5523 6627 8762 10147 11249 11971
4� 8 72 920 2304 3680 4968 6035 8170 9675 10787 11632
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Table 14: Speed in Mop/s for the two versions of the LU factor/solve routine PSGESV
for square matrices of order N , DEDICATED time (Cray T3E)

Process Block Values of N
Grid Size 1000 2000 3000 4000 5000 7500 10000 12500 15000

(NETLIB) 1� 4 24 { { { { { { { { {
2� 4 24 { { { { { { { { {
2� 8 24 { { { { { { { { {
4� 8 24 784 2275 3657 4997 6255 8333 9661 10500 11115

1� 4 24 743 1088 1278 1369 1449 1559 { { {
1� 4 32 709 1074 1281 1393 1489 1626 { { {
1� 4 48 637 1019 1252 1395 1504 1682 { { {

(LIBSCI) 2� 4 24 883 1628 2091 2375 2566 2874 3045 3167 {
2� 4 32 819 1610 2076 2360 2615 2974 3169 3325 {
2� 4 48 785 1512 2037 2343 2632 3066 3323 3505 {
2� 8 24 1107 2359 3290 3937 4397 5228 5627 5939 6138
2� 8 32 1023 2282 3187 3817 4365 5288 5767 6134 6367
2� 8 48 935 2045 2962 3602 4193 5223 5824 6280 6588
4� 8 24 1162 2992 4617 5972 6999 8853 9954 10764 11278
4� 8 32 1134 2894 4509 5673 6922 8866 10127 11038 11629
4� 8 48 1054 2647 4179 5526 6634 8769 10147 11250 11974
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3.5 Discussion

For these timings, we note that the performance of PSGEMM for large problem sizes is
very close to our \achievable peak". Asymptotically, this will be true of any system (as
the O(N3) computation dominates the O(N2) communication costs). However, due to the
speed of its communication, the T3E was the only system to reach this peak with the
selected problem sizes.

For both matrix multiply and LU, dedicated and non-dedicated runs showed little vari-
ation. This seems to indicate that the T3E's queuing system does a good job of isolating
the di�erent jobs.

>From these timings, it appears LIBSCI's use of shmem (as opposed to the netlib's use
if MPI) pays o�. What we see is that LIBSCI routines get better performance than their
netlib equivalents, but that the di�erence narrows as we increase the problem size, or in the
case of PSGEMM, increase block size. We draw the conclusion that this performance win is
mainly in communication since both of these changes tend to minimize the communication
costs.

In a related note, it is easily seen that the performance of PSGEMM increases as we
increase the block size; this is not true for LU. This is because large block sizes increase load
imbalance for LU; PSGEMM, where the operation may be almost arbitrarily reordered, does
not become load-imbalanced as the block size is increased. With large blocking factors, there
is more work done per BLAS invocation, thus allowing a greater portion of the asymptotic
peak to be reached. Despite this, we still restrain our PSGEMM timings to blocking factors
that are roughly the same as for our LU timings, since few applications use PSGEMM in
isolation.
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4 IBM SP

We present performance data on the IBM SP (osprey) for the netlib version of ScaLAPACK
and the version of ScaLAPACK in PESSL on the IBM SP (osprey) located at the CEWES
MSRC and the IBM SP (hpc02) located at the ASC MSRC. The message-passing library
used was the IBM POE library, speci�cally MPI, and the optimized BLAS library used was
the ESSL BLAS.

4.1 Testing of ScaLAPACK within PESSL

An optimized version of ScaLAPACK is available in the IBM Parallel Scienti�c Software
Library (PESSL). We tested PESSL version 2.2.2.4 on the IBM SP (osprey) at the CEWES
MSRC. At the time of this report, PESSL was not available on the IBM SP (hpc02) at the
ASC MSRC.

Parallel ESSL (version 2.2.2.4) lacks the following ScaLAPACK routines:

� pslamch.f, pslange.f, pslacpy.f, pslaset.f, pslapiv.f, psgecon.f, psgerfs.f, psdbtrf.f, psdb-

trs.f, psgbtrf.f, psgbtrs.f, pslansy.f, pspocon.f, psporfs.f, psgeqrf.f, psgeqlf.f, psgerqf.f,

psgeqpf.f, pstzrzf.f, psgeqlf.f, psgels.f

and their dependent auxiliary subroutines. The following PBLAS routines were also missing
or replaced with slightly di�erent functionality:

� ptopset.c, ptopget.c, and pbdtran.f.

In addition, the C interface to the BLACS is not provided in PESSL. The wall-clock and
cpu timers included in the netlib version of the BLACS are also not provided in the IBM
BLACS, so these had to be provided in order to run the ScaLAPACK Test Suite.

The ScaLAPACK Test Suite was run on PESSL (version 2.2.2.4).

4.2 Parallel matrix-matrix multiply performance

Asymptotically, the performance of the PBLAS will rest on the performance of the corre-
sponding BLAS routine. For smaller problem sizes, lower order costs, primarily communi-
cation, will cause performance loss. We therefore see that e�ects due to BLACS optimality
will be seen mostly in the smaller problem sizes. These results have been obtained for the
matrix-matrix multiply operation C  C+AB, where A, B, and C are square matrices of
order N .

We collected performance data for the Level 3 PBLAS routine PDGEMM from the
netlib version of ScaLAPACK and the version of ScaLAPACK in PESSL (version 2.2.2.4).
Timings were performed during \non-dedicated" time and \dedicated" time using batch
queues via \qsub". Dedicated time on this machine was not truly dedicated, as other
people could still log in to the machine. With this caveat, we can state that dedicated and
non-dedicated runs are within clock resolution of each other. Both would occasionally show
large, non-repeatable performance drops, probably due to system interference.

We present in tables 15 and 16 performance timings for the netlib version of PDGEMM
versus the PESSL version of PDGEMM. These timings were obtained during \non-dedicated"
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time over two days. Two sets of timings are included to illustrate the variation in timings
that were encountered.

Comparing the data in Tables 5, 15, and 16, we can see that the PBLAS routine
PDGEMM achieves 74{89% of the per processor DGEMM performance on the IBM SP.
PESSL PDGEMM performance timings are very similar.
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Table 15: Speed in Mop/s for the two versions of the matrix-matrix multiply routine
PDGEMM, NON-DEDICATED time (IBM SP)

Process Block Values of N
grid size 1000 2000 3000 4000 5000

CEWES MSRC

2� 2 50 1703 1818 1848 1873 1865
2� 2 50 1726 1829 1858 1520 1881

(NETLIB) 2� 4 50 2940 3395 3496 3605 3622
2� 4 50 2998 3271 3559 3628 3647
4� 4 50 5046 6175 6714 6904 6992
4� 4 50 4884 6106 6795 6912 7003
4� 8 50 6813 10659 11278 12583 12561
4� 8 50 5865 10410 11202 12401 12401

2� 2 50 1699 1828 1842 1862 1870
2� 2 50 1725 1846 1861 1881 1888

(PESSL) 2� 4 50 2790 3269 3448 3535 3585
2� 4 50 2847 3330 3479 3570 3613
4� 4 50 4638 5957 6421 6763 6841
4� 4 50 4703 5901 6501 6770 6899
4� 8 50 6325 9733 10803 11940 12312
4� 8 50 5742 9287 10728 11995 12472

ASC MSRC

2� 2 50 1102 1152 1125 1057 {
2� 2 64 943 1040 1044 1068 {

(NETLIB) 2� 4 50 1976 2058 2221 1999 2096
2� 4 64 1657 1841 2034 2061 2013
4� 4 50 5221 3603 4173 4244 3988
4� 4 64 3302 3868 4035 3961 3885
4� 8 50 4675 6583 7622 7798 7223
4� 8 64 6442 6756 6961 7045 7487
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Table 16: Speed in Mop/s for the two versions of the matrix-matrix multiply routine
PDGEMM, NON-DEDICATED time (IBM SP)

Process Block Values of N
grid size 6000 7000 8000 9000 10000

CEWES MSRC

2� 2 50 { { { { {
2� 2 50 { { { { {

(NETLIB) 2� 4 50 3670 3683 3215 { {
2� 4 50 3693 3723 3686 { {
4� 4 50 7130 7245 7296 7299 7326
4� 4 50 7165 7282 7331 7342 7373
4� 8 50 13422 13442 13905 13731 14053
4� 8 50 13350 13445 13927 13738 14049

2� 2 50 { { { { {
2� 2 50 { { { { {

(PESSL) 2� 4 50 2564 3675 3603 { {
2� 4 50 3659 3701 3638 { {
4� 4 50 6996 7126 7188 7217 7266
4� 4 50 7064 7152 7220 6248 6819
4� 8 50 12958 13195 13508 13569 13766
4� 8 50 12965 13249 13545 13598 13832

ASC MSRC

2� 2 50 { { { { {
2� 2 64 { { { { {

(NETLIB) 2� 4 50 { { { { {
2� 4 64 { { { { {
4� 4 50 4311 4183 3966 { {
4� 4 64 4034 4135 { { {
4� 8 50 7911 7859 7771 8057 7901
4� 8 64 7779 7884 7717 7768 7665
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4.3 Parallel LU factorization/solve performance

Tables 17 and 18 illustrate the speed of the ScaLAPACK driver routine PDGESV for solving
a square linear system of order N by LU factorization with partial row pivoting of a real
matrix. For all timings, 64-bit oating-point arithmetic was used. Thus, double precision
timings are reported. The data distribution block size is also used as the partitioning unit
for the computation and communication phases.

We collected performance data for the LU factor/solve routine PDGESV from the netlib
version of ScaLAPACK and from PESSL.

We present in tables 17 and 18 performance timings for the netlib version of PDGESV
versus the PESSL version of PDGESV. These timings were obtained during \non-dedicated"
time over two days via the \qsub" queuing system at the CEWESMSRC and the LoadLeveler
queuing system at the ASC MSRC. Two sets of timings (for CEWES MSRC) are included
to illustrate the variation in timings that were encountered.

One obvious inconsistency is the poor PDGESV performance for small problem sizes
when we used two dimensional grids (eg. the 2�4, 2�8 and 4�8 grid sizes). This is easily
explained: two dimensional grids are required for scalability. However, they perform poorly
for small problem sizes due to increased latency-bound communication along the columns
of the process grid. This is a particular problem on the SP, which has a very fast compute
kernel and a very high communication latency. To demonstrate that this was the problem,
table 17 shows the timings for small problem sizes on the appropriate one dimensional grid.
Notice that, as predicted, they have superior performance for small problem sizes. These
timings indicate that a 1�8 grid is probably superior to a 2�4 grid for reasonable problem
sizes; for this modest number of processors, very large problems are required for the superior
scalability of the two dimensional grids to o�set their weakness of increased alpha-bound
communication.
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Table 17: Speed in Mop/s for the two versions of the LU factor/solve routine PDGESV
for square matrices of order N , NON-DEDICATED time (IBM SP)

Process Block Values of N
Grid Size 1000 2000 3000 4000 5000 7500 10000 12500 15000

CEWES MSRC

1� 4 40 703 979 1152 1251 1373 1516 { { {
1� 4 50 633 884 1067 1172 1300 1453 { { {
1� 4 50 676 954 1137 1243 1366 1511 { { {

(NETLIB) 2� 4 40 533 1106 1510 1821 2051 2475 2742 2858 {
2� 4 50 543 1055 1455 1728 1962 2385 2671 2476 {
2� 4 50 555 1106 1482 1807 2025 2471 2747 2919 {
1� 8 40 944 1498 1853 2055 2343 2688 2413 3029 {
1� 8 50 868 1425 1776 2011 2280 2643 2889 3029 {
2� 8 40 662 1629 2350 2957 3475 4363 4970 5263 5613
2� 8 50 632 1581 2228 2748 3209 4111 4744 5164 5506
2� 8 50 597 1526 2288 2846 3308 4226 4836 5253 4954
1� 16 40 1080 2084 2723 3126 3653 4434 4972 5300 5669
1� 16 50 1006 1881 2501 2904 3446 4213 4785 5157 5503
4� 8 40 485 1648 2753 3701 4505 6140 7451 8451 9285
4� 8 50 566 1633 2643 3500 4261 5925 7115 8188 8980
4� 8 50 574 1662 2634 3521 4249 5948 7200 8261 9029
1� 32 40 1169 2423 3389 4186 5110 6551 7663 8439 7228
1� 32 50 1056 2105 3062 3682 4628 5938 7002 7878 8598

1� 4 40 959 1321 1469 1515 1605 1688 { { {
1� 4 50 1027 1365 1508 1549 1639 1714 { { {
1� 4 50 154 1253 1490 1546 1231 1711 { { {

(PESSL) 2� 4 40 891 1897 2288 2598 2759 3047 3212 3249 {
2� 4 50 1079 1911 2333 2625 2809 3088 3253 3336 {
2� 4 50 1082 1897 2342 2609 2811 3083 3244 3331 {
1� 8 40 1139 2029 2448 2648 2864 3142 3247 3322 {
1� 8 50 1160 2005 2443 2663 2892 3161 3287 3367 {
2� 8 40 759 2683 3770 4399 4871 5624 6022 5228 5893
2� 8 50 1098 2600 3671 4473 4929 5704 6115 6358 6580
2� 8 50 1086 2611 3763 4437 4922 5681 6109 6349 6575
1� 16 40 793 2219 3066 3634 4216 5027 5517 5856 6125
1� 16 50 1037 2432 3413 3716 4516 5322 5774 6077 6339
4� 8 40 645 2670 4580 6054 7177 9106 10367 11119 11678
4� 8 50 1103 2579 4404 6065 7407 9319 10514 11311 11936
4� 8 50 1095 2505 4415 6159 7366 9297 6327 7907 11905
1� 32 40 628 1971 3331 4334 5338 7198 8449 9318 10111
1� 32 50 936 2020 3682 4815 6019 7879 9146 10024 10686
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Table 18: Speed in Mop/s for the two versions of the LU factor/solve routine PDGESV
for square matrices of order N , NON-DEDICATED time (IBM SP)

Process Block Values of N
Grid Size 1000 2000 3000 4000 5000 7500 10000 12500 15000

ASC MSRC

1� 4 50 { { { { { { { { {
1� 4 64 399 611 730 782 834 903 { { {

(NETLIB) 2� 4 50 { { { { { { { { {
2� 4 64 413 834 1081 1225 1358 1456 1525 1682 {
1� 8 50 { { { { { { { { {
1� 8 64 636 932 1162 1274 1431 1594 1710 { {
2� 8 50 { { { { { { { { {
2� 8 64 352 1206 1646 2016 2299 2645 3053 3269 3425
1� 16 50 { { { { { { { { {
1� 16 64 697 1308 1673 1832 2217 2644 2935 3137 3287
4� 8 50 { { { { { { { { {
4� 8 64 281 1344 2169 2856 3375 4365 4956 5565 5949
1� 32 50 { { { { { { { { {
1� 32 64 758 1542 2098 2617 3099 3928 4570 5050 5426
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4.4 Parallel Cholesky factorization/solve performance

Since LU is often heavily optimized for benchmarking purposes, a performance comparison
of the Cholesky factorization was also conducted. Table 19 illustrates the speed of the
ScaLAPACK driver routine PDPOSV for solving a symmetric positive de�nite linear system
of order N by Cholesky factorization. For all timings, 64-bit oating-point arithmetic was
used. Thus, double precision timings are reported. The data distribution block size is also
used as the partitioning unit for the computation and communication phases.

We collected performance data for the Cholesky factor/solve routine PDPOSV from the
netlib version of ScaLAPACK and from PESSL. The PESSL Cholesky factorization also
consistently outperformed the netlib implementation, but not to the extent of LU.

Table 19: Speed in Mop/s for the two versions of the Cholesky factor/solve routine
PDPOSV for matrices of order N , NON-DEDICATED time (IBM SP)

Process Block Values of N
Grid Size 1000 2000 3000 4000 5000 7500 10000 12500 15000

CEWES MSRC

2� 2 40 856 1197 1262 1440 1490 1570 { { {
2� 2 50 838 1190 1232 1446 1502 1598 { { {
2� 2 64 791 1135 1305 1436 1507 1598 { { {

(NETLIB) 2� 4 40 1071 1746 2108 2353 2558 2721 2331 3016 {
2� 4 50 1043 1728 2110 2396 2567 2860 3036 3123 {
2� 4 64 954 1520 2063 2307 2516 1655 3019 3141 {
4� 4 40 1455 2870 3575 4267 4591 5302 5642 5849 5070
4� 4 50 1479 2792 3663 4189 4573 5330 5619 5838 6161
4� 4 64 1387 2547 3380 4038 4530 5248 5676 4377 6185
4� 8 40 1088 3849 5195 6171 7288 8817 9613 10468 10916
4� 8 50 1758 3726 5046 6178 7216 8740 9851 10623 10410
4� 8 64 1587 3297 4852 5895 6900 8581 9708 11110 10919

2� 2 40 811 1143 1268 1344 1381 1461 { { {
2� 2 50 925 1223 1338 1430 1474 1544 { { {
2� 2 64 970 1287 1422 1485 1530 1605 { { {

(PESSL) 2� 4 40 1100 1943 2271 2486 2583 2801 2912 2914 {
2� 4 50 1298 2057 2396 2600 2753 2952 3063 3093 {
2� 4 64 1012 2106 2463 2681 2833 3050 3126 3246 {
4� 4 40 1229 2717 3442 3909 4254 4894 5138 5391 5553
4� 4 50 1618 2934 3630 4203 4535 5186 5528 5758 5832
4� 4 64 1617 3042 3802 4471 4785 5365 5753 5959 6142
4� 8 40 859 3841 5388 6468 7176 8601 9427 9990 10429
4� 8 50 1680 3986 5312 6649 7690 9100 10025 10616 11010
4� 8 64 1501 3840 5512 6826 7790 9328 10339 10920 11410
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4.5 Discussion

One surprising result is how well the one dimensional process grids perform. Due to the
high latency for communication, and the speed of the compute node, one dimensional grids
are competitive for these problem sizes even up to 32 nodes.

Comparing PESSL and netlib PDGEMM shows that they are within clock resolution of
each other. For PDGESV, the di�erence is remarkable. PESSL signi�cantly outperforms its
netlib equivalent for all cases. Obviously, this routine has been heavily optimized by IBM.
The only di�erence apparent to the user is that PESSL does not apply the pivots to the L
portion of the LU factorization. This means that if a user wishes to utilize the factorization
itself (as opposed to using it only in the solve), the pivot vector must be applied manually.
The long and short of this is that users would be well-advised to use the PESSL LU, unless
they have a speci�c need for the actual factorizations.

5 SGI Origin 2000

We present performance data on the SGI Origin 2000 for the netlib version of ScaLAPACK
using the distributed-memory BLAS (PBLAS), and the netlib version of LAPACK using
the SGI multi-threaded BLAS (-lblas mp). The message-passing library used was the SGI
MPI v3.0 library. The optimized SGI BLAS (in -lblas) were used for the ScaLAPACK
timings and the SGI MP BLAS (in -lblas mp) were used for the LAPACK timings.

5.1 Parallel matrix-matrix multiply performance

We perform comparison timings of the distributed-memory PBLAS matrix-matrix multiply
routine PDGEMM using the SGI BLAS (-lblas) versus the multi-threaded DGEMM in SGI
BLAS MP (-lblas mp).

Asymptotically, the performance of the PBLAS will rest on the performance of the cor-
responding BLAS routine. For smaller problem sizes, lower order costs, primarily communi-
cation, will cause performance loss. We therefore see that e�ects due to BLACS optimality
will be seen mostly in the smaller problem sizes.

Timings were performed during \dedicated" time when we were alone on the machine,
and if available, in \non-dedicated" time using batch queues via \qsub". Variances in
timings were encountered in both \dedicated" and \non-dedicated" time.

Tables 20 and 21 shows the performance results obtained by the general matrix-matrix
multiply PBLAS routine PDGEMM on the SGI Origin 2000. These results have been
obtained for the matrix-matrix multiply operation C  C + AB, where A, B, and C are
square matrices of order N .

You can control the number of threads to which the MP BLAS are spawned by setting the
environment variable MP SET NUMTHREADS. Otherwise, libblas mp uses all processors
on the machine.

Comparing the data in Tables 5, 20, and 21, we can see that the PBLAS routine
PDGEMM achieves 80{90% of the per processor DGEMM performance on the SGI O2K.

We then repeated these same timings during \non-dedicated" time via batch queues and
\qsub" at ARL. These results are contained in tables 22 and 23.
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Table 20: Speed in Mop/s for matrix-matrix multiply, DEDICATED time (SGI O2K)

Process Block Values of N
grid size 1000 2000 3000 4000 5000

CEWES MSRC

Message- 2� 2 64 1018 1044 1140 1142 1118
Passing 2� 4 64 1924 1963 2091 2187 2127

4� 4 64 3209 3941 3999 3989 3929
4� 8 64 6306 7249 7752 7798 7585

Threaded 4 64 1174 1172 1202 1185 1229
8 64 2097 2298 2407 2343 {
16 64 2775 4143 4493 4421 {
32 64 5671 5666 6935 7840 7726

ARL MSRC

Message- 2� 2 64 1122 1091 1068 1148 1118
Passing 2� 4 64 1989 2017 2127 2229 2171

4� 4 64 3583 3954 4029 4042 3907
4� 8 64 3085 7302 7747 7847 7498

Threaded 4 64 1201 1165 1200 1206 {
8 64 2183 2119 2346 2325 {
16 64 3074 4224 4545 4510 {
32 64 1266 4188 7033 8022 7618

We show timing numbers for message-passing (i.e. ScaLAPACK) and threaded (i.e.
blas mp) matrix multiplication. Here we see that ScaLAPACK is slightly slower than the
threaded implementation for large problems and/or small numbers of processors. This is
to be expected. As previously mentioned, two factors govern parallel matrix multiplication
speed: communication and computation. Communication e�ects will be seen primarily in
the case where the work per processor is low (i.e., a small problem size, or a �xed problem
size with many processors), whereas computation speed will a�ect all problem sizes and
dictate the asymptotic performance.

Let us briey summarize the advantages/drawbacks of each technique. The commu-
nication inherent in the threaded BLAS will likely be controlled by the hardware. This
allows for more e�cient communication, as the latencies inherit in software communication
(eg., MPI interface) are not added to each communication. This implies threaded matrix
multiply will have a slight advantage over message passing for small problem sizes, as its
communication will be faster.

The main di�erence in the algorithms, however, is the data decomposition. Without
access to the source code for the threaded BLAS, we can at best guess what matrix decom-
position is being employed there. Our understanding is that all matrices start out on one
processor. Then, the most probable case is that the threaded BLAS simply partition the
columns of the result matrix C among the processors, and then farm out the corresponding
sections of B and the entire matrix A to all processors.
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Table 21: Speed in Mop/s for the PBLAS matrix-matrix multiply routine PDGEMM,
DEDICATED time (SGI O2K)

Process Block Values of N
grid size 6000 7000 8000 9000 10000

CEWES MSRC

Message-passing 2� 2 64 1161 1121 1160 { {
2� 4 64 2254 2186 2260 2211 2300
4� 4 64 4018 4012 4068 4276 4494
4� 8 64 7783 7644 7834 8290 8482

ARL MSRC

Message-passing 2� 2 64 1171 1133
2� 4 64 2263 2188 2295 2237 2295
4� 4 64 4119 4129 4134 4317 4571
4� 8 64 7841 7778 7860 8405 8612

ScaLAPACK, on the other hand, starts with all three matrices distributed and then
uses an outer-product based algorithm, where column panels of A and row panels of B are
sent among the processes, which then do a series of rank-K updates to produce C.

This may give the threaded BLAS a slight advantage in computation speed, since an
outer-product multiply (ScaLAPACK) requires more memory writes than an inner-product
multiply (probably what blas mp uses). This would explain why the threaded BLAS are
slightly faster for large problem sizes.

The outer product multiply has two advantages, due to the way it performs the commu-
nication. First, it will have better load balance because the messages being sent are smaller
(less time waiting until computation may begin). More importantly, its communication is
pipelined, which signi�cantly reduces communication costs. This e�ect should increase with
the number of nodes. Therefore, we see ScaLAPACK being faster than the blas mp for the
cases where the number of nodes is large and the problem size is not large enough for the
computation term to dominate.

The above analysis holds true for the block sizes that we use in LU. As we increase the
blocking factor, the distribution used in ScaLAPACK becomes more like that proposed for
the threaded BLAS. To con�rm this idea, we ran a few cases with larger blocking factors
and, as shown above, performance was indeed improved. As before, however, these large
blocking factors are usually not used in applications (such as LU), so we do not concentrate
on them here.
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Table 22: Speed in Mop/s for matrix-matrix multiply on SGI O2K, NON-DEDICATED
time (SGI O2K)

Process Block Values of N
grid size 1000 2000 3000 4000 5000

ARL MSRC

Message- 2� 2 64 1096 1062 1101 1157 1137
Passing 2� 2 128 1175 1162 1158 812 1183

2� 2 256 1186 941 1160 1132 1195
2� 4 64 1967 1985 2127 2228 2185
4� 4 64 3605 3879 4045 4061 3959
4� 4 128 3845 4194 4193 4280 4244
4� 8 64 6138 7289 7865 7897 7826

Threaded 4 64 { { { { {
8 64 { { { { {
16 64 { { { { {
32 64 3290 4882 7343 7645 7813

ASC MSRC

Message- 2� 2 64 1059 980 1035 1022 1062
Passing 2� 4 64 1857 1883 1719 2022 1519

4� 4 64 830 1390 2018 2213 2241
4� 8 64 { { { { {
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Table 23: Speed in Mop/s for matrix-matrix multiply, NON-DEDICATED time (SGI
O2K)

Process Block Values of N
grid size 6000 7000 8000 9000 10000

ARL MSRC

Message-passing 2� 2 64 1120 736 { { {
2� 2 128 1198 1209 { { {
2� 2 256 1201 1187 { { {
2� 4 64 2162 1425 1011 2300 2323
4� 4 64 4125 4110 3927 4485 4562
4� 4 128 4311 3358 2928 4798 4780
4� 8 64 7980 7915 7635 8606 8674

Threaded 4 64 1181 1235 1116 867 {
8 64 2362 2251 2220 2183 {
16 64 3237 3227 4060 4326 {
32 64 8409 8909 8498 8017 8465

ASC MSRC

Message- 2� 2 64 { { { { {
Passing 2� 4 64 1799 1590 1545 { {

4� 4 64 2385 1359 1414 2707 1879
4� 8 64 { { { { {
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5.2 Parallel LU factorization/solve performance

Table 24 illustrates the speed of the ScaLAPACK driver routine PDGESV using distributed-
memory BLAS (PBLAS) versus the LAPACK routine DGESV using the multi-threaded
BLAS. PDGESV or DGESV solves a square linear system of order N by LU factorization
with partial row pivoting of a real matrix. For all timings, 64-bit oating-point arithmetic
was used. Thus, double precision timings are reported. The distribution block size is also
used as the partitioning unit for the computation and communication phases. These timings
were performed during dedicated time, and yet variances were still encountered.

One obvious inconsistency is the poor PDGESV performance for small problem sizes
when we used two dimensional grids (eg. the 2 � 8 and 4 � 8 grid sizes). This is easily
explained: two dimensional grids are required for scalability. However, they perform poorly
for small problem sizes due to increased latency-bound communication along the columns of
the process grid. To demonstrate that this was the problem, table 26 shows the timings for
small problem sizes on the appropriate 1D grid. Notice that even though these timings were
done during non-dedicated time and executed interactively, they have superior performance
for small problem sizes.

Table 24: Speed in Mop/s of LU factor/solve for square matrices of order N , DEDICATED
time (SGI O2K)

Process Block Values of N
Grid Size 1000 2000 3000 4000 5000 7500 10000 12500 15000

CEWES MSRC

Message- 1� 4 64 532 705 773 821 859 917 970 966 {
Passing 1� 8 64 709 1113 1280 1379 1451 1581 1743 1752 1818

2� 8 64 541 891 2074 2313 2575 2938 3229 3339 3373
4� 8 64 623 1485 2888 2541 4190 5011 5571 5902 6096

Threaded 4 64 759 810 895 923 937 { { { {
8 64 1024 1145 1349 1456 { { { { {
16 64 1234 1500 1805 1956 { { { { {
32 64 1132 1453 1948 1990 2273 { { { {

ARL MSRC

Message- 1� 4 64 567 747 804 865 888 936 1016 1004 {
Passing 1� 8 64 681 1169 1333 1409 1467 1637 1824 1811 1889

2� 8 64 368 904 2113 2379 2613 3013 3317 3436 3584
4� 8 64 561 1559 3140 2592 4323 5071 5691 6051 6345

Threaded 4 64 758 814 897 932 { { { { {
8 64 1058 1176 1377 1464 { { { { {
16 64 1249 1518 1840 1988 { { { { {
32 64 1176 1488 2008 2077 2283 { { { {

The main thing to note in these timings is that ScaLAPACK maintains scalability as
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Table 25: Speed in Mop/s of LU factor/solve for square matrices of order N , NON-
DEDICATED time (SGI O2K)

Process Block Values of N
Grid Size 1000 2000 3000 4000 5000 7500 10000 12500 15000

ARL MSRC

Message- 1� 4 64 585 741 816 699 774 922 1012 1036 {
Passing 2� 4 64 472 708 1315 1442 1561 1514 1567 1738 1839

1� 8 64 { { { { { { { { {
2� 8 64 554 907 2127 2382 2669 2744 2890 3292 3487
4� 8 64 818 1554 3101 2601 4327 5240 5786 6152 5751

Threaded 4 64 { { { { { { { { {
8 64 { { { { { 1480 1719 1680 1789
16 64 { { { { { { { { {
32 64 1091 1446 1965 2096 2426 { 3316 { {

ASC MSRC

Message- 1� 4 64 532 730 793 853 873 963 { { {
Passing 2� 4 64 579 732 1356 1458 1555 1701 1826 1883 {

1� 8 64 751 1174 1352 1475 1568 1734 1878 1912 {
2� 8 64 705 948 2232 2506 2750 3139 3427 3601 3701
1� 16 64 877 1595 1974 2225 2434 2825 3154 3264 3503
4� 8 64 820 1872 3129 2667 4369 5257 5844 6213 6469

the problem size and number of processors is increased, while the threaded code does not.
This is because ScaLAPACK knows precisely what operation is being performed, and is
thus better able to schedule communication (i.e., make use of pipelining, avoid unnecessary
communication, etc).

34



Table 26: Speed in Mop/s of ScaLAPACK PDGESV for square matrices of order N , 1D
process grids, NON-DEDICATED time (SGI O2K)

Process Block Values of N
Grid Size 1000 2000 3000 4000 5000 7500 10000 12500 15000

CEWES MSRC

Message passing 1� 8 64 560 768 1316 1564 1784 2174 2444 2644 {
1� 16 64 566 876 1676 2098 2455 3192 3745 4192 4504
1� 32 64 555 919 1858 2445 2970 4020 5041 4173 6539
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5.3 Discussion

The SGI Cray Scienti�c Library (SCSL) has recently become available. SCSL is tuned
for the R10000 Origin systems and will be the replacement for SGI's CompLib and Cray's
LIBSCI. As future work, we would like to conduct performance evaluations of this library
as it would contain a machine-speci�c optimized version of ScaLAPACK for the SGI Origin
2000.

6 SGI Power Challenge Array

We present performance data on the SGI Power Challenge Array for the netlib version
of ScaLAPACK using the distributed-memory BLAS (PBLAS), and the netlib version of
LAPACK using the SGI multi-threaded BLAS (-lblas mp). The message-passing library
used was the SGI MPI v3.0 library. The optimized SGI BLAS in (-lblas) were used for the
ScaLAPACK timings and the SGI MP BLAS in (-lblas mp) were used for the LAPACK
timings.

6.1 Parallel matrix-matrix multiply performance

We perform comparison timings of the distributed-memory PBLAS matrix matrix multiply
routine PDGEMM using the SGI BLAS (-lblas) versus the multi-threaded DGEMM in SGI
BLAS MP (-lblas mp).

Asymptotically, the performance of the PBLAS will rest on the performance of the cor-
responding BLAS routine. For smaller problem sizes, lower order costs, primarily communi-
cation, will cause performance loss. We therefore see that e�ects due to BLACS optimality
will be seen mostly in the smaller problem sizes.

Timings were performed during \dedicated" time. Variances in timings were encoun-
tered.

Tables 27 and 28 show the performance results obtained by the general matrix-matrix
multiply PBLAS routine PDGEMMand the multi-threaded SGI MPBLAS routine DGEMM
on the SGI Power Challenge Array. These results have been obtained for the matrix-matrix
multiply operation C  C +AB, where A, B, and C are square matrices of order N .

You can control the number of threads to which the MP BLAS are spawned by setting the
environment variable MP SET NUMTHREADS. Otherwise, libblas mp uses all processors
on the machine.

Comparing the data in Tables 5, 27, and 28, we can see that the PBLAS routine
PDGEMM achieves 67{81% of the per processor DGEMM performance on the SGI PCA.

The overall analysis of threaded versus message passing should be the same for the Power
Challenge Array as it was for Origin 2000. However, the number of processors available to
us is less, so the lack of scalability is not as evident for these problem sizes.
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Table 27: Speed in Mop/s for matrix-matrix multiply, DEDICATED time (SGI PCA)

Process Block Values of N
grid size 1000 2000 3000 4000 5000

CEWES MSRC

Message-passing 2� 2 64 1087 1005 1016 1037 1027
2� 4 64 2033 2025 1926 1852 1888
4� 4 64 2700 3708 3208 3350 3367

Threaded 4 64 1239 1236 1236 1236 1274
8 64 2389 2469 2422 2441 {
16 64 4194 4559 4326 4924 {

ARL MSRC

Message-passing 2� 2 64 931 883 893 914 {
2� 4 64 1752 1711 1719 1750 1731
4� 4 64 { { { { {

Threaded 4 64 1001 1027 1017 1015 1042
8 64 269 254 267 266 {
16 64 { { { { {

Table 28: Speed in Mop/s for matrix-matrix multiply, DEDICATED time (SGI PCA)

Process Block Values of N
grid size 6000 7000 8000 9000 10000

CEWES MSRC

Message-passing 2� 2 64 1030 1014 949 { {
2� 4 64 1951 1910 1806 1919 1896
4� 4 64 3511 3533 3315 3602 3543

ARL MSRC

Message-passing 2� 2 64 { { { { {
2� 4 64 1752 { { { {
4� 4 64 { { { { {
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6.2 Parallel LU factorization/solve performance

Table 29 illustrates the speed of the ScaLAPACK driver routine PDGESV using distributed-
memory BLAS (PBLAS) versus the LAPACK routine DGESV using the multi-threaded
BLAS. PDGESV/DGESV solves a square linear system of order N by LU factorization
with partial row pivoting of a real matrix. For all timings, 64-bit oating-point arithmetic
was used. Thus, double precision timings are reported. The distribution block size is also
used as the partitioning unit for the computation and communication phases.

Timings were performed during \dedicated" time. Variances in timings were encoun-
tered.

The overall analysis of threaded versus message passing should be the same for the power
challenge array as it was for origin 2000. However, the number of processors available to us
is less, so the lack of scalability is not as evident for these problem sizes.

Table 29: Speed in Mop/s of LU factor/solve for square matrices of order N , DEDICATED
time (SGI PCA)

Process Block Values of N
Grid Size 1000 2000 3000 4000 5000 7500 10000 12500 15000

CEWES MSRC

Message- 1� 4 64 535 643 684 721 745 775 { { {
Passing 1� 8 64 660 671 900 1166 1248 1281 1415 1360 1379

2� 8 64 335 1247 1537 1705 1943 2319 2504 2567 2608

Threaded 4 64 696 707 831 870 890 { { { {
8 64 951 978 1241 1342 { { { { {
16 64 800 1116 1585 1745 { { { { {

ARL MSRC

Message- 1� 4 64 528 622 640 665 681 710 { { {
Passing 1� 8 64 701 1105 1108 1145 1187 1271 1290 { {

2� 8 64 { { { { { { { { {

Threaded 4 64 592 604 710 746 764 { { { {
8 64 225 224 234 237 { { { { {
16 64 { { { { { { { { {
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7 Conclusions and future work

Of all the machines, the Cray T3E appeared to have the most repeatable timings, both
for dedicated and non-dedicated runs. The IBM SP also did not seem strongly a�ected
by whether the machine was dedicated or not; however, timings were never more than
roughly repeatable on this platform. Also, the IBM SP would occasionally show large dips
in performance.

The SGI Origin 2000 timings were probably the least repeatable. The timings reported
in this paper for a particular grid size were always obtained in one run, but often that run
was selected as the best out of several runs (by best, we mean the run with the smoothest
(i.e., steadily increasing) performance curve). Even so, these runs are far from smooth.

On the Cray T3E, the routines present in LIBSCI were always slightly faster than the
equivalent from netlib ScaLAPACK. Because this performance win decreased with problem
size, it is probably due to a lower order term such as communication. In particular, LIBSCI's
use of shmem probably allows for faster communication than the publicly available MPI-
based implementation.

On the IBM SP, there was no noticeable di�erence between the matrix multiply supplied
by PESSL and that supplied by the netlib version of ScaLAPACK. PESSL had a much faster
version of LU. The only di�erence between the two routines as far as the user is concerned is
the form of the factorization, which is more complex in the PESSL implementation. Since
LU is often heavily optimized for benchmarking purposes, a performance comparison of
the Cholesky factorization was also conducted. The PESSL Cholesky factorization also
consistently outperformed the netlib implementation, but not to the extent of LU.

On the SGI Origin 2000 and the SGI Power Challenge Array, threaded codes showed a
slight advantage over ScaLAPACK for the matrix multiply. For LU, threaded codes did well
for small problem sizes and/or small numbers of nodes, but were not as scalable as their
ScaLAPACK equivalents. Due to time constraints, we have not presented threaded results
for many of the larger problem sizes for the LU factorization. Future work should extend
the threaded timings to these larger problem sizes to ensure that the general tendencies we
have seen so far continue throughout the performance curve.
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